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Abstract

Using an alternate form of the Gaussian probability integral discovered a number of
years ago, it is shown that the solution to a number of previously considered
communication problems can be simplified and in some cases made more accurate
(i.e., exact  rather than bounded). These problems include the evaluation of 1) bit
error probability of uncoded PSK with Costas Loop tracking, 2) word error probability
of antipodal modulation in the presence of fading, 3) bit error probability of coded
MPSK over memoryless  fading channel with given channel state information, 4)
conditional symbol error probability of MPSK in the presence of carrier
synchronization error, and 5) average error probability for binary AWGN
intersymbol  interference channel. Also, obtained is a generalization of this new
alternate form to the case of a two-dimensional Gaussian probability integral with
arbitrary correlation which can be used to evaluate the symbol error probability of
MPSK with I-Q unbalance.

;his work was performed at the Jet Propulsion Laboratory, California Institute of Technology
under a contract with the National Aeronautics and Space Administration. The authors are with

the Jet Propulsion Laboratory.
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~ntroduct-

A number of years ago, Craig [I] cleverly showed that the evaluation of average
probability of error for the two-dimensional additive white Gaussian noise
(AWGN) channel could be considerably simplified by choosing the origin of
coordinates for each decision region as that defined by the signal  vector as opposed
to using a fixed coordinate system origin for all decision regions derived from the
received vector. This shift in vector space coordinate systems allowed the integrand
of the two-dimensional integral describing the conditional (on the transmitted
signal) probability of error to be independent of the transmitted signal. A byproduct
of Craig’s work was a new definite integral form for the Gaussian probability
function. In particular, the Gaussian probability function, Q(x), ordinarily defined

b

could also now be defined (but only for x 2 O) by

o)

(2)

The form in (2) is not readily obtainable by a change of variables directly in (l). It
can, however, be obtained by a straightforward change of variables of a standard
known integral involving Q(x), in particular, Eq. 3.362(2) of [lO].l In addition to
the advantage of having finite integration limits, the form in (2) has the argument
of the function Q(x), namely, x, contained in the integrand rather than in the
integration limits as is the case in (l). The latter has some interesting implications
with regard to simplifying the evaluation of performance results related to
communication problems wherein the argument of Q(x) is dependent on random
system parameters and thus requires averaging over the statistics of these
parameters. In what follows, we give some examples of such problems with the
hope of stimulating further application of the result in (2).

‘ This standard integral from which (2) can be derived was pointed out to the authors by one of

the reviewers.
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1. Error Probability Performance of Uncocled PSK with Costas LooP Tracking

It is well-known (see [2] for example) that the bit error probability performance of an
uncoded PSK system with an imperfect carrier reference derived from a Costas loop
is given by2

(3)‘b(E)  =  r“/!2pb(E@)d@)d@

where

(r )Pb(E;@)=Q  ~COSf$
o

(4)

is the conditional (on the loop phase error $) bit error probability given by and

2exp(pc, cos2@)
P(O) =

z~o(fu) ‘
–7r/2s4<7r/2 (5)

is the probability density function (p.d.f.) of the phase error in the form of a
Tikhonov distribution. Also, in (4) and (5), Eb / No is the bit energy to noise ratio and

peq = + (6)

is the equivalent loop SNR with p = ~Tb / No (P, denotes the total received power
and Tb denotes the bit time) and

SL =
2Eb/No

l+2EblNo
is the so-called squaring

(7)

loss assuming ideal integrate-and-dump arm filters for the
Costas loop. Substituting (4) and (5) in (3) results in

(8)

which ordinarily is evaluated by numerical integration using an appropriate
subroutine for Q(x) which itself is an integral in accordance with its definition in
(l). The evaluation of (8) can be simplified (?) a bit by using the form of Q(x) given
in (2). In particular, we obtain the following development

=-his  result assumes that the 180° phase ambiguity associated with the Costas loop is perfectly

resolved. Methods for accomplishing this are beyond the scope of this discussion.
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o

Eb
)~ {[

x l ’ Eb

“p ‘2 Nosin20  -xJ2’XP ) }

+  peq COS24J  d($kie (9)
=  7r’]o(p,q  ) 0 2N0 sin’9

1 %12

0
)J {[

Eb x Eb
exp –

=  im’zo(pcq)  0
exp + P.q2 N0 sin’ O -X 2N0 sin’ O ) 1

COSCP dmie

Finally, recognizing that the integral on @ is in the form of a modified Bessel
function of the first kind, we get the final desired result

Eb

(-’A’J[

‘ — +  P e q0 2 N0 s i n2 O
Pb(E) = ~~~’’exp ) dO

I“(P.q )
(lo)

The form of (10) is interesting in that the Q(x) function needed in the integrand of
(8) has been replaced by a modified Bessel function with an argument related to both
the equivalent loop SNR ( Pc, ) and the detection SNR (&/NO).

2. Word Error I?robabilitv Performance of Binarv Anti~odal  Modulation with
Independent Ravlei~h Fading  Amplitudes – Known Channel State Information

Consider the transmission of one of two binary digital waveforms (words) over an
AWGN channel which is also perturbed by Rayleigh fading. In particular, define
the two transmitted signals of duration NT sec by

so(t) = f dnp(r – nT)
Jl=l (11)

S1 (f)= –so(f)
where p(r) is a unit amplitude rectangular pulse of duration T sec in the interval
0< t < T and dfi takes on values *1 depending on the specific binary data pattern that
represents the signals. The additive Gaussian noise n(~) has single-sided power
spectral density No watts/Hz and assume that each bit (duration 7 see) of the
signals is independently faded with an identical Rayleigh distribution. As such the
received signal (assuming so(r) was sent) is expressed as
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r(f) = s;(f)+ n(t) (12)
where

SJr) = ~p.d.p(f – d-) (13)
n=]

and p~(pl, P2,..., pN) is an i.i.d sequence with normalized ( E{p~} = 1) Rayleigh p.d.f.

P(Pi)  =  2Pi ‘XP(–P;)$ 0  S Pi s ““ (14)
It is straightforward to show that, assuming complete knowledge of the channel
fading state, the optimum (maximum a posteriori) receiver implements the
decision rule

Choose SO(l) if ~P#fn~ll), r(t)dt >0. Otherwise choose q(t)
JI=l

(15)

Since Xg~p#m~~,,, r(t)dt is Gaussian with conditional mean and variance
n=l

then it is easily shown that the conditional average word error probability based on
the above decision rule is given by

@!P)=Q[/~) (16)

The unconditional error probability is then obtained by averaging (16) over the N
identical p.d.f.’s  in (14) resulting in the N-fold integral

[d:)P(E) = ~~” f’Q &~ P. P(PI )P(P2)”  -0 p(pN)dpIdp2  “ “ ‘~PN (17)

Using (2) the N-fold integral with infinite limits of (17) can be reduced to a
single integral with finite limits as follows.
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-1 X12

H

( )
~P; Pf/No ~

~
P(E)= JJ”’J’O ; o exp – “=’ —  [~2p,  .Xp(-p:)]dp,dp,... ddede

sin2 O i=l
(18)

p*(l+PT/ivJ ~ ‘do‘+JT’2[~2pexp[-  sin2~ ) ‘]
which when simplified becomes

[1
N

P(E)= :J:’2 1. de~+ Pz /No
sin’ O

(19)

For the Rayleigh fading case as consider here, evaluation of (17) could be simplified
by recognizing that the N-fold average can be looked upon as a single average over

the chi-squared random variable ~ p;. Thus, in this instance (19) may not be that
n=l

much simpler than (17) although the former is still an integral with finite limits
whereas the latter would become an integral over a semi-infinite interval.
However, in the more general i.i.d. distributed fading case where no simple

N

expression exists for the p.d.f. of ~ p:, the technique of applying (2) to the Gaussian
JI=l

integral in (17), will always, regardless of the fading p.d.f.,  reduce to a single integral
of some function of O raised to the ZVth power analogous to (19).

3. Bit Error Probabili ty of Coded MPSK Signaling  Over a Memorvless  Fading
channel – Known Channel State Information

The previous example can be considerably generalized to yield similar benefits. In
particular, consider the transmission of cc)ded MPSK signals over an AWGN
channel which is also perturbed by fading. 3 If the fading is independent from
transmission to transmission then the resulting channel is memoryless. An
example of the performance evaluation for such an example was considered in [3]
where the error correction coding was specifically trellis coding. The reader is
referred to that paper for the details of the analysis. In short, the bit error
performance was derived in the form of a union-Chernoff bound where the

%ote that we are not restricting the fading statistics to be Rayleigh  distributed. In fact, later on
we shall show that simple results are obtainable for Rician as well as Rayleigh  fading.
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Chernoff bound portion applied to the pairwise error probability and the union
bound portion converted the pairwise error probability to average bit error
probability using the transfer function bound method. We shall show here that
using the alternate form of Q(x) given in (2) enables one to eliminate the need for
Chernoff  bounding the pairwise error probability. 4 Hence, the resulting form for
the average bit error probability is strictly a union (transfer function) bound.

Following [3], we denote a coded MPSK symbol sequence of length N b$

X=( X1, X2,. ... XN ) (20)
where the kth eIement  of x, namely, x~, represents the transmitted MPSK symbol at
time k and is a nonlinear function of the state of the encoder Sk and the n
information bits, Uk, at its input, i.e., x~ = ~(sk, u, ). The transition from state to state

is defined by a similar nonlinear relation, namely, s~.l = g(sk,uk). Corresponding to
the transmission of x, the channel outputs the sequence

Y=(Y1,Y2>...>YN) (21)

where the kth element of y, namely, y~, representing the channel output at time k
is given by

Yk  =  Pkxk + ‘ k

As before pk is the normalized
a zero mean Gaussian random

(m
fading amplitude for the kth transmission and n~ is
variable with variance cr2.

For the case of known channel state information, it was shown in [3] that
using the maximum-likelihood decision metric for i.i.d.  fading per transmission,
the conditional (on the channel state infc}rmation) pairwise error probability,
namely, the probability of deciding i when

P(x+ilp)=Q[$J_)

where q is the set of all n for which ~a # x..

indeed x was transmitted is given by

(23)

Using the form of Q(x) given in (2), we can express (23) as

4A similar method using a different representation of Q(x) but with infinite range is discussed in [71.
%e assume that the MPSK symbols are normalized such that ~.1 = 1, i.e., the signals lie on the

perimeter of the unit circle.



where

{
f)(e)~exp –

1
802 sin2 O 1 (25)

and

neq

represents the square of the weighted Euclidean distance between the two symbol
sequences. Alternately,

(27)

The exact form of (24) is to’be compared with the Chernoff bound given by Eq. (20) of
[3], namely,

P(x + ilp) s D“’(x’i) (28)
where

{}

1
Dgexp  –—

802

Finally, the unconditional pairwise error probability is given by

:J:’2[D(e)]~wM” =LJ:’*[D(ol]’’(’.’) pdoP(x+i)=–
?r

(29)

(30)

where the overbar denotes statistical averaging over the vector random variable p.
Furthermore, since the pm’s are i.i.d., then the average on p can be partitioned with
the result that

(31)

Using the pair-state method discussed in [3], the exact pairwise error
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probability of (30) or (31) can be converted to a union bound on the average bit error
probability. In particular, a pair state transition diagram [4] is constructed in terms of
the pair state

Sk ::(SJJ, Ukquk,fik) (32)
where fk, tik are, respectively, the estimates of the state of the decoder and the
information symbol. Using the definition of x. and rewriting (26) as

Ct(x>i) = ~p:lf(s#,un) –f(fn, tin]2~~a2(sm,ufi)=  f(sk,  uk) (33)
nEq JIEl)

then by analogy with results in [3,4], the average bit error probability is upper
bounded by

(34)

where T(D(0), 1) is the transfer function of the pair-state transition diagram whose

branch labels contain the factor [D(o)] 6’(s.JJ.)IA.I for the no fading case and

[D(o)]%um)p” for the fading case. Once again note that the Chernoff bound on the
pairwise error probability previously required in order to apply the transfer function
bound has been eliminated and instead replaced by a single integration on the
variable O after evaluating the transfer function. In this sense, the form of Q(x) in (2)
allows manipulations akin to those afforded by the Chernoff  bound but without the
necessity of invoking a bound. Actually, this observation can be made directly from (2)
by noting that the integrand has its maximum value when O = 7r/2. Thus, replacing
the integrand by its maximum value we get the well-known upper bound on Q(x),
namely, Q(x) < ~ exp(–x2 / 2) which is in the form of a Chernoff  bound.

The average on p“ required in (31) is easily evaluated for Rayleigh and Rician
fading channels. In particular, using the results in [3], and letting 1/202= E/ N,, we
have for the Rayleigh  p.d.f. of (14)

(35)

where as in [3]

(36)
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Similarly, for the Rician channel characterized by the p.d.f.

P(Pi) = 2Pi(l + ~)ew[-K –P*(1 + K)]Jo(2~i~~)> O s p, <00 (37)

we have

~(e)] Jm-dp= =
[}

l+K

l+ K+-

~o)P.K/(l+K+P”7 /sh’o) (38)

sin2 O
which clearly simplifes  to (36) for K = O. Note that for BPSK (i.e., M = 2), we have
~~ = 4 independent of n and thus, for the Rayleigh case for example, (31) simplifies
to6

[]

;J:’2 + ‘deP(x-+i)=–

sin26’

(39)

where d is the number of elements in ~, i.e., the Hamming distance between x and
i. If the two code words are equal and opposite, then d = N and (39) agrees with
(19).

Application of (34) for specific trellis codes can be easily carried using the
examples given in [3].

4. Conditional Symbol Error Probability of MPSK iri the Presence of Carrier
Synchronization Error

Consider a coherent MPSK system with a carrier tracking loop that produces a phase
error @. The conditional (on @) symbol error probability of such a system has been
previously computed in [2, Appendix B] and is given by

(40)

-*j~s’(fi-’).xp(-y2).ti(y..t(@)}y}y
We now show that this expression can be simplified using the alternate form of
Q(x) given in (2).

6A similar result was obtained in [8].
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The vector representation of an MPSK system consists of M points
uniformly distributed on a circle of radius @. For this system, the geometry for
the correct decision region associated with the transmitted signal point SO = – E, isJ__
illustrated in Fig. 1 where as suggested in [1] the origin of coordinates has been
shifted to the signal point. Also note that for convenience we have rotated the
coordinate system by @ radians. Following the approach in [1] (also see Section 3.2.8
of Chapter 3 in [5]), we can write the probability of an error given that signal SO is
transmitted as as

(41)

where R is the distance from the signal point to the boundary point E (in general, a
function of O) and PR (r, 0) is the bivariate  Gaussian p.d.f. that represents the noise
vector in polar coordinates, that is

()PR,WO = J- +- , ()<)-<C4 (42)
AJo ‘X p

which is clearly independent”of  O. Substituting (Q) into (41) and performing tie
integration on r gives the simplification

P(E;(#$o) = ~~-’~exp[-~~e+~[.;l. t~exp[-~~o (43)

Applying the law of sines to triangles 00’ E and 00’1? we get

(44)

Combining (44) with (43) and simplifying using appropriate changes of variables
gives the final desired result for the conditional symbol error probability namely,

(45)

where we have also taken note of the fact that from the symmetry of the signaI
constellation, P(E;  @,) is independent of i. Note thaf no error )inctions are needed to
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ezMluat~ (45). For M = 2 (BPSK), (45) simplifies to

(46)

Making the changes of variables a = –(0 – Z/ 2), ~ = @ – Z/ 2 in the second and third
integrals of (46), respectively, we see that  these terms cancel and thus

~ex’(-%wdo’’[l%c”so)P(E;@)lM=2  = : ~ (47)

which is the well-known result used in Example 1.

5. Evaluation of a Well-Known Integral

Consider the integral

1 = ~ exp(–a2z2 * bz)erf’c z dz (48)
-,

where erfc z is the complementary error function with argument z and Cl, C2 are
constants which in many cases of interest are either zero or infinite. This integral
occurs, for example, in problems where average error probability performance is to
be computed in the presence of Gaussian interference other than that produced by
the additive noise. For the special case of Cl = -=0,C2  = ~, this integral can be
evaluated in closed form as [6; Appendix 1, Eq. (Al .lOa)]

fmexp –a*z* * bz)erfcz dz =-00 $ex’($)e’c[*l
(49)

For any other pair of values Cl,C2 a closed form for this integral has not been found.
Although we too cannot find a closed form for the general case of (48), we are
however able to convert the integral intc) one of fixed finite limits which therefore
simplifies the case where one of the two constants Cl, C’z is infinite, e.g.,
C,=O, C2 =-.

Rewriting (48) in terms of the Gaussian probability integral and using (2) we
get

( ))I = 2~ Q(fiZ)exp(-a2Z2  * bz)dz = ~~~’2~  exp -(a’ + & Z2 * bz dzdt? (50)I



12

Completing the square of the argument of the exponential gives

‘=:J:’2ex’(-J’(JJ:expHA(’)z*%Jldzd6
where

$G=A(O) = a +

Performing the integration

/

on z gives the final desired result

–ex’[-2:(@letic[c’A(e%l-etic[c2A(’)’*l}do

1 ./2 ~~

] “  ;~o A(e)

(51)

(52)

(53)
As an example, consider the special case where Cl = O, C2 = *. Then, since etic (-)=0,
we have

It is to be emphasized that (54) is not readily obtainable  by any s~aightf~rward
change of variables in (48).

6. Average  Error Probability for the Binarv AWGN Intersvmbol  Interference (1S1)
Channel

It is well-known [9] that maximum-likelihood demodulation of binary equiprobable
data transmitted over an AWGN channel with intersymbol  interference (1S1) of
finite memory L can be based on a 2~-1 state trellis where the states are determined
by the preceding L -1 data symbols. The algorithm for selecting the most probable
sequence is the well known maximum-likelihood decoding (Viterbi)  algorithm.
The evaluation of the performance of such a demodulator has in the past been
expressed in terms of a union-Chernoff (upper) bound on the average error
probability [9]. As in Example 4, we shall once again show how the Chernoff  portion
of the bound can be eliminated by instead using an exact expression based on (2) for
the pairwise error probability which in this example also corresponds to the
probability of choosing a particular incorrect path in the trellis rather than the
correct one.

Consider a binary data source characterized by the impulse sequence



d(f) = :dkqf - H’) (55)

13

k.-

where as before {d~ } is a binary i.i.d. sequence taking on values *1. Before
transmission over the AWGN channel, the data source is passed through a transmit
filter with impulse response h(t). Thus, the transmitted message (signal) is
described by

x(f)  = ~dkh(t – m) (56)
k=-

and the corresponding received signal is y(()= x(r)+ n(t). Assuming a maximum-
likelihood decision rule, then it is has been shown [9] that the P~rwise Probability
P(x + ~), namely, the probability of choosing the incorrect transmitted sequence
(uniform samples of x(t) spaced by T seconds) i when in fact x was transmitted is
given by

[r (
-——

P(x+2)=Q ~ f .:~ + 2~Ek&,_ihi
NO k=-t# i=l ) )

(57)

where  {hi} are the 1S1 coefficients defined by

hk_j ~~h(t – kT)h(r – IT) ~ hj_k (58)

and {~~} are the error sequences defined by

(1, dk=l,;k=–l

1+tfk-a= 0> ‘k=2k (59)

–1, dk = –l,>k = 1

Rather than use a Chernoff bound on (57) (as was done in [9]) one can again
use the form of Q(x) in (2) to write the pairwise error probability as

1 X12
P(x+i)=--jo

(
exp –

) )N  1~2~~~[’~~+2~’~’k_ihi  dOo i=l

= 1 x/2 ‘-1

HI{

1

[

L-1
— exp –

No sin’0 )k
&~~ + 2~CkEk_ihi o

no
k = - N i=l

(60)
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which as before becomes the Chernoff  bound by letting the integrand  take on its
maximum value corresponding to 8 = 7r/2. Thus, following steps identical to those
in [9, Chapter 4], we arrive at a union bound on the average bit error probability
analogous to the union-Chernoff  bound given by [9, Eq. (4.9.23)], namely,

(61)

where W(E) is the weight (number of nonzero components) of the sequence G with
components as in (59). The first sum in (61) represents averaging over all possible
error sequences. The evaluation of (61) can be carried out by the transfer function
bound approach analogous to that used in Example 3.

7. Svmbol Error Probability of MPSK with I-Q Unbalance (Detection in the Presence
of Correlated Quadrature Noise Com~one~

Consider a coherent MPSK system with I-Q carrier demodulation reference signals
that are not in perfect phase quadrature. In particular, consider the optimum MPSK
receiver illustrated in Fig. 2 where the I and Q demodulation reference signals are
given by

rc(f) = JZCoscoct, r,(t) = –JZsin(@c2 -- @u) (62)
where @u represents the degree of unbalance, i.e., the deviation from perfect phase
quadrature. In response to a transmitted MPSK signal

s(f) = JiF Cos(cocf + em ) (63)
where em takes on values ~i = 27r(i – I)/M, i = 1,2,.. .,M with equal probability l/M,
the I and Q integrate-and-dump output signals become

F ~.,
x=&’cosom+‘ +J’’n(f)koswd[

(64). .
Y \,

Y=@sin(O~+@U)-i-‘  *J~.(r)(-Jsin(@cr-Ou))dt

where E= = PT is the energy per MPSK symbol. The I and Q noises Nx, NY in (64) are
zero mean correlated Gaussian random variables each with variance a2 = No/2 and
correlation
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E{ NXNY}  = 02sin@U4p02 (65)
Analogous to the MPSK decision problem with perfect I-Q demodulation, the
calculation of the symbol error probability in the presence of I-Q unbalance can be
determined from the geometry of Fig. 3. Assuming as before that the transmitted
signal is s,= -g (i.e., O-= –z), then the evaluation can be carried out either
assuming the point O as the center of coordinates (the classical approach) or by the
simpler approach of using the point O’ (the locating of the tip of the signal vector) as
the center of coordinates. In what follows, we shall assume the latter. Since for the
assumed transmitted signal we have from (64) and (65) that ~ = –&, ~ = –pm,
then defining the quantities

--

~~J= = Jm, ~~ = tan-’ $ = tan-* p (66)

we have by analogy with (41) that the probability of error is given by

(67)

where as before R is the distance from the signal point to the boundary point E (in
general, a function of 0) and P~(r,t?)  is the bivariate Gaussian p.d.f. that represents
the correlated noise vector in polar coordinates, that is

PR,e(r,e) = .arqexp{-$(~’)},  C)5rS~,-trSOS7r  (68)

Applying the law of sines to triangles 00 E and 00’1? in Fig. 3 we get

(69)

Combining (69) with (68) and simplifying using appropriate changes of variables
gives the final desired result for the symbol error probability in presence of 1-Q
unbalance namely,
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P(E:@u) = *J-O+”-”’

[

E,[l+p2][’+p’’”(’(@+;))]’’”2(;+@.)

* “ P  “ 1-P2
sin2 @

i

_&[l+p*f’-p’’”(’(@+;))]’’”2(;-’J)  ~@

+&F+’’”*e’ ‘0 1 - ’ 2
sin2 @

/

p4sin @U, #,= tan-’p = tan-’ (sin @u)
(70)

where we have again made use of the symmetry of the signal constellation to note
that P(E;@J Si) is independent of i. The importance of the form in (70) is that the

dependence on E,/ No is still in the argument of the exponential of the integrand
and thus it is straightforward to extend this result to, for example, coded modulation
without the necessity of invoking Chernoff  bounds.

An interesting relation occurs if we specialize the result in (70) to the binary
I?SK case. Letting M = 2 in (70) we get

where we have further noted that COS
2 ~, = 1/(1+ p2). Since the first integral in the

region 7r/2 – O.s @s 7r/2 and the second integral in the region z/2, s @ ~ z/2+0.
cancel, then (71) simplifies to the desired result

$- ..p{_3_[i$]I@&!?l}d*P(E;@U)=~~1_Psin2@

- $ 7  .xp{_3_[_#!@_#}d.1;r‘2x o l+psin2@

(72)

Since the quadrature signal and noise components ~ and NY, have no effect on the
detection of BPSK (note that this is true even if IVY and NX are correlated), then the
average error probability is also given by



[nF’(E) = Q &
o

(73)

independent of @u or equivalently p. Hence, equating (72) and W) we arrive at a
parametric (in terms p) of expression for the Gaussian probability integral which is
generalization of (2), namely,

a

(74)

~~f(@;x,p)d@

Fig. 4 is an illustration of f (O;x,p) versus @ for two values of x and values of p in
the range O to 1. Note that for p = O the function is monotonically increasing in @.
As p increases away from zero, the function f (@;x,p) exhibits a peak and eventually
approaches a narrow distribution in the neighborhood of @ = n/ 4 as p approaches
unity. For fixed x, however, the area under the various curves for different values
of p is constant and depends only on the value of x in accordance with (74). As
such, the value of p can be used to influence the accuracy of the integral evaluation.
To illustrate this point, Table 1 shows the evaluation of the integral in (74) as a
function of p using a simple Riemann sum of N points for the same two values of
x as in Fig. 4 and several values of N. Also shown are the corresponding exact
values of Q(x) as determined from standard mathematical tables.

8. The Two-Dimensional Gaussian Probability Integral - A New F~

The normalized (unit variance) two-dimensional Gaussian probability integral  is
defined by

Q(x,,Y,;P)=
q&iF’{-q{_;:;~}@

Rewriting (75) as

Q(x,,Y,;P)  =
1—--rr2?r~p’  0  0  ‘ x ”

(75)

(X+ X,)2+ (Y+ Y,)2-2P(X+.J(Y+YJ &~y.—
2(1 - p’)

(76)
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we see that we can interpret this integral as the probability that a signal vector
s = (–xl ,-yl ) received in correlated unit variance Gaussian noise falls in the upper
right quadrant of the (x,y) plane. Defining

then using a geometry analogous to Fig. 3, it is straightforward to show that
Q(x,,Y,;P) Can be expressed as

which using (78a) simplifies still further to

Q(x,>Y,@=&j
* J~--un-’~

{ }

x; l–psin20 ,0
l–psin2dexp ‘~(1–p2)sin20

+ 1 Lan-’: J=”
f {

2  l–psin20
Go l–psin20

exp --~
}

2  (1– P2)sit120 ‘ o

(78a)

(78b)

For the special case of p = O, (78b) simplifies to

Q(x,sY,;o) = Q(x,)Q(Y,)

-P-”-’’exp2i2,p@+*J;Jexp{e*,}d@,}d@ ‘7’)1
‘Zno

In addition, when xl = y, =x, we have

(80)

Comparing (80) with (2) we see that to compute the square of the one-dimensional
Gaussian probability integral one integrates the same integrand but only over the
first half of the domain. The relation in (80) can also be directly obtained from
comparing the symbol error probability y for QPSK, namely [5; Eq. (4.132)]

‘(E)=2%)-Q2(m (81)

with the general expression obtained for symbol error probability of MPSK using
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Craig’s method [5; Eq. (3.119)], namely,

( M - l x

-{ 1E, sinz ~
-d doP(E)=+jo  M exP ~ . z

Letting M = 4 in (82) and equating with (81) gives after simplification the
equivalent of (80).

(82)



.

20

~eferences,

1. Craig, J.W., “A New, Simple and Exact Result for Calculating the Probability of
Error for Two-Dimensional Signal Constellations,” IEEE MILCOM’91 Conference
Record, Boston, MA, pp. 25.5.1-25.5.5.

2. Lindsey, W.C. and M.K. Simon, Telecmmnunimtion  Systems Engineering, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1973. Reprinter by Dover Press, 1991.

3. Divsalar,  D. and M.K. Simon, ‘llellis Coded Modulation for 4800-9600 bits/s
Transmission Over a Fading Mobile Satellite Channel,” IEEE Journal on Selected
Areas in Communications, Vol. SAC-5, No. 2, February 1987, pp. 162-175.

4. Divsalar,  D. and M.K. Simon, “Combined Trellis Coding with Asymmetric MPSK
Modulation: JPL Publication 85-24, MSAT-X  Report 109, May 1, 1985.

5. Simon, M. K., Hinedi, S.M. and W.C. Lindsey, Digital Communication Techniques:
Signal Design and Detection, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1995.

6. Middleton, D., An Introduction  to Statistical Communication Theory, McGraw-Hill,
Inc., New York, NY, 1960.

7. Tellambura,  C., “Evaluation of the Exact Union Bound for Trellis-Coded
Modulations Over Fading Channels: IEEE Transactions on Communications, Vol. 44,
No. 12, December 1996, pp. 1693-1699.

8. HaII, E. K. and S. G. Wilson, “Design and Analysis of Turbo Codes on Rayleigh
Fading Channels,” accepted for publication in the IEEE Journal  on Selected Areas in
Communications.

9. Viterbi,  A.J. and J.K. Omura,  Principles of Digital Communication and Coding,
McGraw-Hill Inc., New York, NY, 1979.

10. Gradshteyn, 1.S. and I.M. Ryzhik, Table of Integrajs,  Series, and Products, Academic
Press, 1980, New York, NY.



Table 1. Evaluation of Q(x) by Eq. (74).

X=2

P

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

X=5

P

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

N=1OO

(XX) (Eq. (74)) Q(x) (exact)

0.2309E-01 0.2275E-01
0.2308E-01 0.2275E-01
0.2306E-01 0.2275E-01
0.2301E-01 0.2275E-01
0.2296E-01 0.2275E-01
0.2290E-01 0.2275E-01
0.2284E-01 0.2275E-01
0.2279E-01 0.2275E-01
0.2276E-01 0.2275E-01
0.2275E-01 0.2275E-01

N=1OO

Q(x) (Eq. (74)) Q(x) (exact)

0.2960E-06 0.2867E-06
0.2948E-06 0.2867E-06
0.2921E-06 0.2867E-06
0.2892E-06 0.2867E-06
0.2874E-06 0.2867E-06
0.2868E-06 0.2867E-06
0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06

N=500

Q(x) (Eq. (74)) Q(x) (exact)

0.2282E-01 0.2275E-01
0.2282E-01 0.2275E-01
0.2281E-01 0.2275E-01
0.2280E-01 0.2275E-01
0.2279E-01 0.2275E-01
0.2278E-01 0.2275E-01
0.2277%-01 0.2275E-01
0.2276E-01 0.2275E-01
0.2275E-01 0.2275E-01
0.2275E-01 0.2275E-01

N=500

Q(x) (Eq. (74)) Q(x) (exact)

0.2885E-06 0.2867E-06
0.2883E-06 0.2867E-06
0.2877E-06 0.2867E-06
0.2872E-06 0.2867E-06
0.2868E-06 0.2867E-06
0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06
0.2867E-06 0.2867E-06



Fig. 1. Geometry for Correct Decision Region for sa
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Fig.3. Geometry for Correct Decision Region forw
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